

MU Corn Gene Zoo (2018)

		coinonel	
Teosinte	Missouri corn	varigated	
Tabloncillo	cob pipe	fine stripe	
Mayo Tuxpeno	**************************************	iojap stripe	
Olotillo	Bloody Butcher	argentia variegated	
Harinoso de ocho	Hopi blue corn	yellow striped	
Chapalote pinole maiz	ornamental	lineate leaves	
Peptillo	ornamental	Yellow green	
201-010	flour corn	lesion	
Kokoma	strawberry popcorn	sunburn	
KLongfellow	popcorn	golden plant	
Yellow Thompson	sweet corn	purple plant	
Smut Nose	waxy corn	crinkled leaf	
Hickory King	amylomaize	liguleless	
Gourdseed	(Alaco) Maj cor	wrinkled plant	
Shoepeg	TOZ CRIVI (Edily)	knotted	
Yellow Ceole	111 CBM (mid)	dwarf	
Golden Prolific	III Chiri (IIIId)	nana plant	
Latham's Double	118 CRM (lata)	brachytic	
Winnebago mixed	TIO CININ (IRIE)	male sterile	
Lancaster Sure Crop	Bt (rootworm)	tassel seed	
Reids Yellow Dent	Bt (corn borer)	barren inflorescence	
M017	Roundup Ready™	branched silkless	
B73	LibertyLink™	anther ear	
MO17 X B73	no biotech	tunicate	

Demonstration of corn history from domestication to modern hybrids

Teosinte: Teosinte is widely accepted as the wild progenitor of modern corn. It produces small ears with hard kernels. Corn races: Corn was domesticated by Native Americans in Mexico and Central America and then spread throughout the Western Hemisphere. Representative old corn varieties and their races include: Harinoso de ocho, Peptillo, Tabloncillo, Mayo Tuxpeno, and Olotillo (early Mexican varieties); Kokoma and Z01-010 (Pima-Papago); Longfellow, Yellow Thompson, and Smut nose (Northern Flints); Gourdseed, Shoepeg, and Hickory King (Southern Dents); Yellow Creole and Golden Prolific (Southeastern Flints and Fours); Latham's double (Derived Southern Dents); Winnebago mixed (Great Plains Flints and Flours).

Reid's Yellow Dent: Reid's Yellow Dent, a productive OP variety, resulted from an unplanned, but fortuitous, crossing of a northern flint and southern dent. This variety was the source for many popular inbreds, including B73.

Lancaster Sure Crop: Lancaster Sure Crop was developed by Isaac Hershey in Lancaster County, Pennsylvania. Many modern hybrids have at least one inbred that traces back to this open-pollinated variety.

Inbreds for use in corn breeding were developed as early as the 1920's. Inbreds are derived by forcing corn plants to self pollinate. B73 (1972) and Mo17 (1964) are examples of inbreds that were commonly used. A cross between B73 and Mo17 demonstrates hybrid vigor.

Hybrids: The first commercially successful hybrids were double (4-way) crosses that used four inbreds and required two years to complete. Double cross corn hybrids were more economical to produce than single cross hybrids. Double cross corn hybrids were commonly grown in the USA during the 1940s and 1950s. Single cross (2-way) hybrids

possess less inbreeding depression, more hybrid vigor, and greater yield potential than double cross hybrids. They
use just two inbreds. Today, nearly all of the corn acres planted in the USA is planted with single cross corn hybrids

Demonstration of the use of biotech traits

Corn hybrids that contain one or more biotechnology traits became commercially available in the late 1990's. Two herbicide resistant traits, Roundup Ready™ (resistant to glyphosate) and Liberty Link™ (resistant to glufosinate), are currently available to corn growers in the USA. The genes that confer herbicide resistance were derived from two different species of bacteria.

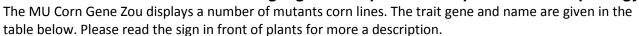
Biotech traits that confer insect resistance originated from *Bacillus thuringiesis* and are often referred to as Bt traits. The first Bt trait conferred resistance to feeding by Lepidoptera (moths and butterflies) larva. The primary target insect species is European corn borer. A second Bt trait confers resistance to feeding by Coleoptera (beetles) larva. The primary target insect species is corn rootworm. Both Bt traits confer resistance to several insects other than the primary target species.

Demonstration of adaptation

Modern corn hybrids are nearly day-neutral, meaning that photoperiod length has little effect on the timing of flowering and other stages. Corn development is controlled by the accumulation of heat units. Hybrids adapted to the southern portion of the USA require more heat units to mature than hybrids adapted in the northern Corn Belt. Corn Relative Maturity (CRM) uses the unit "days", but is an estimation of relative maturity and does not mean calendar days.

Demonstration of special uses

Sweet corn hybrids possess one or more genes that slow the conversion of sugars to starch in the kernels. The sugars (e.g. sucrose) have a much sweeter taste than starch. Hybrids with the following genes are displayed at the MU Corn Gene Zou: su, se, sh2, and a combination of su/se/sh2.


Flint corn plants produce kernels that do not dent. Commonly, ears with brightly colored kernels are used as autumn decoration (**ornamental flint**).

Flour corn plants produce soft kernels that are easy to grind into flour. Blue Hopi is exhibited in the MU Corn Gene Zou. **Popcorn** is a type of flint corn. When heated, water in the kernels is vaporized to steam. The pericarp restrains the vapor inside the kernel until the pressure is great enough to rupture the kernel. **Strawberry popcorn** plants produce ears that are strawberry fruit shaped with red kernels.

Missouri Corn Cob Pipe Corn produces ears with cobs that are broad in diameter and suitable for making corn cob pipes. **Bloody Butcher** plants produce bright red kernels.

The endosperm of **waxy** hybrids produce more than normal amounts of amylopectin starch. The endosperm of **amylomaize** hybrids produce more than normal amounts of amylose starch.

Demonstration of the effects of single genes on plant development and morphology

Gene	Name	Gene	Name	Gene	Name
al1	albescent plant	hs1	hairy sheath	sdw1	semidwarf plants
an1	anther ear	hsf1	hairy sheath, slashed	sk1	silkless
ar1	argentia	id1	indeterminate growth	sl1	slashed
ba2	barren stalk	ij1	iojap striping	sr1	striate leaves
bd1	branched silkless	j1	japonica striping	tb1	teosinte branched
bif1	barren inflorescence	kn1	knotted	tlr1	tillered
bk2	brittle stalk	la1	lazy plants	tp1	teopod
blh1	bleached leaf	les1	lesion	ts1	tassel seed
bm1	brown midrib	lg3	liguleless	ts6	tassel seed
br1	brachytic	li1	lineate leaves	tu1	tunicate
cg1	corngrass	lw2	lemon white	v5	virescent
clt1	clumped tassel	lxm1	lax midrib	vsr1	virescent striped
cr1	crinkly leaves	ms8	male sterile	wd1	white deficiency
ct1	compact plant	na1	nana plant	wi2	wilted
d8	dwarf	nl2	narrow leaf	wrp1	wrinkled plant
d10	dwarf	og1	old gold stripe	ws3	white sheath
eg1	expanded glumes	pl1	purple plant	wt2	white tips
f1	fine stripe	ra1	ramosa	yg2	yellow green
g2	golden plant	rg1	ragged leaves	ys1	yellow striped
gs1	green stripe	sbd1	sunburn	ysk1	yellow streaked